104 research outputs found

    The reported thoracic injuries in Homer's Iliad

    Get PDF
    Homer's Iliad is considered to be a prominent and representative work of the tradition of the ancient Greek epic poetry. In this poem Homer presents the battles which took place during the last year of the 10-year lasting Trojan War between Achaeans and Trojans. We wanted to examine the chest wounds, especially those which are described in detail, according to their localization, severity and mortality. Finally, there are reported 54 consecutive thoracic injuries in the Iliad. The mostly used weapons were the spear (63%), the stones (7.4%), the arrow (5.5%) and the sword (5.5%). We divided the injuries according to their severity in mild (those which did not cause serious injury to the victim), medium (those which cause the victim to abandon the battlefield), and severe (those which cause death of the victim). According to this classification, the reported injuries were mild in 11.11%, medium in 18.52%, and severe in the last 70.37% of the reported cases. In other words, 89% of the injuries belong to the medium or severe category of thoracic injury. As far as the mortality of the injuries is concerned, 38 out of 54 thoracic injuries include death, which makes the mortality percentage reach 70.37%. Concerning the "allocation of the roles", the Achaean were in 68% perpetrators and the Trojans in only 32%. In terms of gravity, out of 38 mortal injuries 30 involve a Trojan (78.95%) and the remaining 8 an Achaean (21.05%). The excellent and detailed description of the injuries by Homer, as well as of the symptoms, may reveal a man with knowledge of anatomy and medicine who cared for the injured warriors in the battlefield

    Performance-Driven Internet Path Selection

    Full text link
    Internet routing can often be sub-optimal, with the chosen routes providing worse performance than other available policy-compliant routes. This stems from the lack of visibility into route performance at the network layer. While this is an old problem, we argue that recent advances in programmable hardware finally open up the possibility of performance-aware routing in a deployable, BGP-compatible manner. We introduce ROUTESCOUT, a hybrid hardware/software system supporting performance-based routing at ISP scale. In the data plane, ROUTESCOUT leverages P4-enabled hardware to monitor performance across policy-compliant route choices for each destination, at line-rate and with a small memory footprint. ROUTESCOUT's control plane then asynchronously pulls aggregated performance metrics to synthesize a performance-aware forwarding policy. We show that ROUTESCOUT can monitor performance across most of an ISP's traffic, using only 4 MB of memory. Further, its control can flexibly satisfy a variety of operator objectives, with sub-second operating times

    SABRE: Protecting Bitcoin against Routing Attacks

    Full text link
    Routing attacks remain practically effective in the Internet today as existing countermeasures either fail to provide protection guarantees or are not easily deployable. Blockchain systems are particularly vulnerable to such attacks as they rely on Internet-wide communication to reach consensus. In particular, Bitcoin -the most widely-used cryptocurrency- can be split in half by any AS-level adversary using BGP hijacking. In this paper, we present SABRE, a secure and scalable Bitcoin relay network which relays blocks worldwide through a set of connections that are resilient to routing attacks. SABRE runs alongside the existing peer-to-peer network and is easily deployable. As a critical system, SABRE design is highly resilient and can efficiently handle high bandwidth loads, including Denial of Service attacks. We built SABRE around two key technical insights. First, we leverage fundamental properties of inter-domain routing (BGP) policies to host relay nodes: (i) in locations that are inherently protected against routing attacks; and (ii) on paths that are economically preferred by the majority of Bitcoin clients. These properties are generic and can be used to protect other Blockchain-based systems. Second, we leverage the fact that relaying blocks is communication-heavy, not computation-heavy. This enables us to offload most of the relay operations to programmable network hardware (using the P4 programming language). Thanks to this hardware/software co-design, SABRE nodes operate seamlessly under high load while mitigating the effects of malicious clients. We present a complete implementation of SABRE together with an extensive evaluation. Our results demonstrate that SABRE is effective at securing Bitcoin against routing attacks, even with deployments as small as 6 nodes

    Confucius Queue Management: Be Fair But Not Too Fast

    Full text link
    When many users and unique applications share a congested edge link (e.g., a home network), everyone wants their own application to continue to perform well despite contention over network resources. Traditionally, network engineers have focused on fairness as the key objective to ensure that competing applications are equitably and led by the switch, and hence have deployed fair queueing mechanisms. However, for many network workloads today, strict fairness is directly at odds with equitable application performance. Real-time streaming applications, such as videoconferencing, suffer the most when network performance is volatile (with delay spikes or sudden and dramatic drops in throughput). Unfortunately, "fair" queueing mechanisms lead to extremely volatile network behavior in the presence of bursty and multi-flow applications such as Web traffic. When a sudden burst of new data arrives, fair queueing algorithms rapidly shift resources away from incumbent flows, leading to severe stalls in real-time applications. In this paper, we present Confucius, the first practical queue management scheme to effectively balance fairness against volatility, providing performance outcomes that benefit all applications sharing the contended link. Confucius outperforms realistic queueing schemes by protecting the real-time streaming flows from stalls in competing with more than 95% of websites. Importantly, Confucius does not assume the collaboration of end-hosts, nor does it require manual parameter tuning to achieve good performance

    Securing Internet Applications from Routing Attacks

    Full text link
    Attacks on Internet routing are typically viewed through the lens of availability and confidentiality, assuming an adversary that either discards traffic or performs eavesdropping. Yet, a strategic adversary can use routing attacks to compromise the security of critical Internet applications like Tor, certificate authorities, and the bitcoin network. In this paper, we survey such application-specific routing attacks and argue that both application-layer and network-layer defenses are essential and urgently needed. While application-layer defenses are easier to deploy in the short term, we hope that our work serves to provide much needed momentum for the deployment of network-layer defenses

    Human Papillomavirus Genotyping and E6/E7 mRNA Expression in Greek Women with Intraepithelial Neoplasia and Squamous Cell Carcinoma of the Vagina and Vulva

    Get PDF
    A large proportion of vaginal and vulvar squamous cell carcinomas (SCCs) and intraepithelial neoplasias (VAIN and VIN) are associated with HPV infection, mainly type 16. The purpose of this study was to identify HPV genotypes, as well as E6/E7 mRNA expression of high-risk HPVs (16, 18, 31, 33, and 45) in 56 histology samples of VAIN, VIN, vaginal, and vulvar SCCs. HPV was identified in 56% of VAIN and 50% of vaginal SCCs, 71.4% of VIN and 50% of vulvar SCCs. E6/E7 mRNA expression was found in one-third of VAIN and in all vaginal SCCs, 42.9% of VIN and 83.3% of vulvar SCCs. Our data indicated that HPV 16 was the commonest genotype identified in VAIN and VIN and the only genotype found in SCCs of the vagina and vulva. These findings may suggest, in accordance with other studies, that mRNA assay might be useful in triaging lesions with increased risk of progression to cancer

    Genetic Dissection of the Cellular Pathways and Signaling Mechanisms in Modeled Tumor Necrosis Factor–induced Crohn's-like Inflammatory Bowel Disease

    Get PDF
    Recent clinical evidence demonstrated the importance of tumor necrosis factor (TNF) in the development of Crohn's disease. A mouse model for this pathology has previously been established by engineering defects in the translational control of TNF mRNA (TnfΔAREmouse). Here, we show that development of intestinal pathology in this model depends on Th1-like cytokines such as interleukin 12 and interferon γ and requires the function of CD8+ T lymphocytes. Tissue-specific activation of the mutant TNF allele by Cre/loxP-mediated recombination indicated that either myeloid- or T cell–derived TNF can exhibit full pathogenic capacity. Moreover, reciprocal bone marrow transplantation experiments using TNF receptor–deficient mice revealed that TNF signals are equally pathogenic when directed independently to either bone marrow–derived or tissue stroma cell targets. Interestingly, TNF-mediated intestinal pathology was exacerbated in the absence of MAPKAP kinase 2, yet strongly attenuated in a Cot/Tpl2 or JNK2 kinase–deficient genetic background. Our data establish the existence of redundant cellular pathways operating downstream of TNF in inflammatory bowel disease, and demonstrate the therapeutic potential of selective kinase blockade in TNF-mediated intestinal pathology
    corecore